Copied to
clipboard

G = C33:6D9order 486 = 2·35

6th semidirect product of C33 and D9 acting via D9/C3=S3

non-abelian, supersoluble, monomial

Aliases: C33:6D9, C34.8S3, C32:C9:15S3, C32:4(C9:S3), (C32xC9):17S3, C3:(C32:2D9), C33.36(C3:S3), C3.1(He3:5S3), C3.3(C32:4D9), C32.26(He3:C2), C32.10(C33:C2), (C3xC9):4(C3:S3), (C3xC32:C9):7C2, SmallGroup(486,181)

Series: Derived Chief Lower central Upper central

C1C3C3xC32:C9 — C33:6D9
C1C3C32C33C34C3xC32:C9 — C33:6D9
C3xC32:C9 — C33:6D9
C1C3

Generators and relations for C33:6D9
 G = < a,b,c,d,e | a3=b3=c3=d9=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, dbd-1=bc-1, ebe=b-1c, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1600 in 207 conjugacy classes, 57 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, C32, D9, C3xS3, C3:S3, C3xC9, C3xC9, C33, C33, C33, C3xD9, C9:S3, C3xC3:S3, C33:C2, C32:C9, C32xC9, C34, C32:2D9, C3xC9:S3, C3xC33:C2, C3xC32:C9, C33:6D9
Quotients: C1, C2, S3, D9, C3:S3, C9:S3, He3:C2, C33:C2, C32:2D9, C32:4D9, He3:5S3, C33:6D9

Smallest permutation representation of C33:6D9
On 54 points
Generators in S54
(1 43 32)(2 44 33)(3 45 34)(4 37 35)(5 38 36)(6 39 28)(7 40 29)(8 41 30)(9 42 31)(10 21 54)(11 22 46)(12 23 47)(13 24 48)(14 25 49)(15 26 50)(16 27 51)(17 19 52)(18 20 53)
(2 38 30)(3 31 39)(5 41 33)(6 34 42)(8 44 36)(9 28 45)(10 51 24)(11 25 52)(13 54 27)(14 19 46)(16 48 21)(17 22 49)
(1 29 37)(2 30 38)(3 31 39)(4 32 40)(5 33 41)(6 34 42)(7 35 43)(8 36 44)(9 28 45)(10 24 51)(11 25 52)(12 26 53)(13 27 54)(14 19 46)(15 20 47)(16 21 48)(17 22 49)(18 23 50)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 11)(2 10)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)(37 52)(38 51)(39 50)(40 49)(41 48)(42 47)(43 46)(44 54)(45 53)

G:=sub<Sym(54)| (1,43,32)(2,44,33)(3,45,34)(4,37,35)(5,38,36)(6,39,28)(7,40,29)(8,41,30)(9,42,31)(10,21,54)(11,22,46)(12,23,47)(13,24,48)(14,25,49)(15,26,50)(16,27,51)(17,19,52)(18,20,53), (2,38,30)(3,31,39)(5,41,33)(6,34,42)(8,44,36)(9,28,45)(10,51,24)(11,25,52)(13,54,27)(14,19,46)(16,48,21)(17,22,49), (1,29,37)(2,30,38)(3,31,39)(4,32,40)(5,33,41)(6,34,42)(7,35,43)(8,36,44)(9,28,45)(10,24,51)(11,25,52)(12,26,53)(13,27,54)(14,19,46)(15,20,47)(16,21,48)(17,22,49)(18,23,50), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,11)(2,10)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,52)(38,51)(39,50)(40,49)(41,48)(42,47)(43,46)(44,54)(45,53)>;

G:=Group( (1,43,32)(2,44,33)(3,45,34)(4,37,35)(5,38,36)(6,39,28)(7,40,29)(8,41,30)(9,42,31)(10,21,54)(11,22,46)(12,23,47)(13,24,48)(14,25,49)(15,26,50)(16,27,51)(17,19,52)(18,20,53), (2,38,30)(3,31,39)(5,41,33)(6,34,42)(8,44,36)(9,28,45)(10,51,24)(11,25,52)(13,54,27)(14,19,46)(16,48,21)(17,22,49), (1,29,37)(2,30,38)(3,31,39)(4,32,40)(5,33,41)(6,34,42)(7,35,43)(8,36,44)(9,28,45)(10,24,51)(11,25,52)(12,26,53)(13,27,54)(14,19,46)(15,20,47)(16,21,48)(17,22,49)(18,23,50), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,11)(2,10)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,52)(38,51)(39,50)(40,49)(41,48)(42,47)(43,46)(44,54)(45,53) );

G=PermutationGroup([[(1,43,32),(2,44,33),(3,45,34),(4,37,35),(5,38,36),(6,39,28),(7,40,29),(8,41,30),(9,42,31),(10,21,54),(11,22,46),(12,23,47),(13,24,48),(14,25,49),(15,26,50),(16,27,51),(17,19,52),(18,20,53)], [(2,38,30),(3,31,39),(5,41,33),(6,34,42),(8,44,36),(9,28,45),(10,51,24),(11,25,52),(13,54,27),(14,19,46),(16,48,21),(17,22,49)], [(1,29,37),(2,30,38),(3,31,39),(4,32,40),(5,33,41),(6,34,42),(7,35,43),(8,36,44),(9,28,45),(10,24,51),(11,25,52),(12,26,53),(13,27,54),(14,19,46),(15,20,47),(16,21,48),(17,22,49),(18,23,50)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,11),(2,10),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36),(37,52),(38,51),(39,50),(40,49),(41,48),(42,47),(43,46),(44,54),(45,53)]])

54 conjugacy classes

class 1  2 3A3B3C···3N3O···3W6A6B9A···9AA
order12333···33···3669···9
size181112···26···681816···6

54 irreducible representations

dim112222366
type++++++
imageC1C2S3S3S3D9He3:C2C32:2D9He3:5S3
kernelC33:6D9C3xC32:C9C32:C9C32xC9C34C33C32C3C3
# reps1193127462

Matrix representation of C33:6D9 in GL7(F19)

7000000
01100000
0010000
0001000
0000100
0000010
0000001
,
7000000
01100000
0070000
00011000
0000001
0000100
0000010
,
1000000
0100000
0010000
0001000
00001100
00000110
00000011
,
9000000
01700000
00170000
0009000
0000100
00000110
0000007
,
01600000
6000000
0004000
0050000
00001800
00000012
0000080

G:=sub<GL(7,GF(19))| [7,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11],[9,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,7],[0,6,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,4,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,8,0,0,0,0,0,12,0] >;

C33:6D9 in GAP, Magma, Sage, TeX

C_3^3\rtimes_6D_9
% in TeX

G:=Group("C3^3:6D9");
// GroupNames label

G:=SmallGroup(486,181);
// by ID

G=gap.SmallGroup(486,181);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,697,655,218,867,2169,3244]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1*c,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<